
Zero of energy is arbitrary  
The normal definition of a potential energy is somewhat arbitrary. Consider where 

a potential comes from: It appears when the total energy (potential plus kinetic) is 

constant. But if something is constant, we can add a number to it, and it is still 

constant! Thus whether we define the gravitational potential at the surface of the 

earth to be 0 or 100 J does not matter.  

Only differences in potential energies play a rôle. It is customary to define the 

potential ``far away'', as || x  to be zero. That is a very workable definition, 

except in one case: if we take a square well and make it deeper and deeper, the 

energy of the lowest state decreases with the bottom of the well. As the well depth 

goes to infinity, the energy of the lowest bound state reaches  , and so does the 

second, third etc. state. It makes much more physical sense to define the bottom of 

the well to have zero energy, and the potential outside to have value 0V , which 

goes to infinity. 

Solution  

 
Figure 3.1: The change in the wave function in region III, for the lowest state,  

as we increase the depth of the potential well. We have used ma 1010 ,  
and   9,8,7,6,5,4,3,20 ak     and 10. 



 

As stated before the continuity arguments for the derivative of the wave function 

do not apply for an infinite jump in the potential energy. This is easy to understand 

as we look at the behaviour of a low energy solution in one of the two outside 

regions (I or III). In this case the wave function can be approximated as  

(3.1) 

 

which decreases to zero faster and faster as  0V  becomes larger and larger. In the 

end the wave function can no longer penetrate the region of infinite potential 

energy. Continuity of the wave function now implies that  0)()(  aa  .  

Defining  

(3.2) 

 

we find that there are two types of solutions that satisfy the boundary condition:  

(3.3) 

Here 

(3.4) 

 

We thus have a series of eigen states ,...2,1,0),( lxl . The energies are  

(3.5) 

 

 
Figure 3.2: A few wave functions of the infinite square well. 



 

These wave functions are very good to illustrate the idea of normalization. Let me 

look at the normalization of the ground state (the lowest state), which is  

(3.6) 

For axa  , and 0 elsewhere.  

We need to require  

(3.7) 

 

where we need to consider the absolute value since  )(x  can be complex. We 

only have to integrate from a  to a , since the rest of the integral is zero, and we 

have  
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Here we have changed variables from x  to  a
xy 2
 . We thus conclude that 

the choice  
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leads to a normalized wave function. 

Non-normalisable wave functions  
I have argued that solutions to the time-independent Schrödinger equation must be 

normalised, in order to have a the total probability for finding a particle of one. 

This makes sense if we think about describing a single Hydrogen atom, where only 



a single electron can be found. But if we use an accelerator to send a beam of 

electrons at a metal surface, this is no longer a requirement: What we wish to 

describe is the flux of electrons, the number of electrons coming through a given 

volume element in a given time.  

Let me first consider solutions to the ``free'' Schrödinger equation, i.e., without 

potential, as discussed before. They take the form  

(3.10) 

Let us investigate the two functions. Remembering that 
xi

p

   we find that 

this represents the sum of two states, one with momentum k , and the other with 

momentum k . The first one describes a beam of particles going to the right, 

and the other term a beam of particles traveling to the left.  

Let me concentrate on the first term, that describes a beam of particles going to the 

right. We need to define a probability current density. Since current is the number 

of particles times their velocity, a sensible definition is the probability density 

times the velocity,  

(3.11) 

 

This concept only makes sense for states that are not bound, and thus behave 

totally different from those we discussed previously.  

 

Potential step  
Consider a potential step         (3.12) 

 

 

 

 

 

Figure 3.3 : The step potential  



Let me define  
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We assume a beam of particles comes in from the left,  

(3.13) 

 

At the potential step the particles either get reflected back to region I, or are 

transmitted to region II. There can thus only be a wave moving to the right in 

region II, but in region I we have both the incoming and a reflected wave,  

)(xI          (3.14) 

)(xII          (3.15) 

We define a transmission and reflection coefficient as the ratio of currents between 

reflected or transmitted wave and the incoming wave, where we have canceled a 

common factor  

(3.16) 

 

 

Even though we have given up normalisability, we still have the two continuity 

conditions. At  0x   these imply, using continuity of  )(x  and  
dx
xd )(

,  
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We thus find  
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and the reflection and transmission coefficients can thus be expressed as 
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Notice that 1TR !  

In Fig. 3.3 we have plotted the behaviour of the transmission and reflection of a 

beam of Hydrogen atoms impinging on a barrier of height  2 meV.  

 

 
Figure 3.4: The transmission and reflection coefficients for a square barrier. 

 

Square barrier  
A slightly more involved example is the square potential barrier, an inverted square 

well, see Fig. 3.4  

 
Figure 3.5: The square barrier. 

We are interested in the case that the energy is below the barrier height, 

00 VE  . If we once again assume an incoming beam of particles from the 

right, it is clear that the solutions in the three regions are  



)(xI          (3.22) 

)(xII          (3.23) 

)(xIII          (3.24) 

Here  

(3.25) 

 

Matching at  ax   and  ax   gives (use  )sinh()sinh( xx   and 

)cosh()cosh( xx  ) 

)sinh()cosh( 2211 aBaAeBeA ikaika      (3.26) 

))cosh()sinh(()( 2211 aBaAeBeAik ikaika    (3.27) 

)sinh()cosh( 223 aBaAeA ika        (3.28) 

))cosh()sinh(( 223 aBaAeikA ika       (3.29) 

 

These are four equations with five unknowns. We can thus express for of the 

unknown quantities in one other. Let us choose that one to be  1A , since that 

describes the intensity of the incoming beam.  

We are not interested in 2A  and 2B , which describe the wave function in the 

middle. We can combine the equation above so that they either have 2A  or 2B  on 

the right hand side, which allows us to eliminate these two variables, leading to 

two equations with the three interesting unknowns 3A , 1B and 1A . These can then 

be solved for 3A  and 1B  in terms of 1A :  

The way we proceed is to add eqs. (3.26) and (3.28), subtract eqs. (3.27) from 

(3.29), subtract (3.28) from (3.26), and add (3.27) and (3.29).  

 

We find  



)cosh(2 2311 aAeAeBeA ikaikaika     (3.30) 

)sinh(2)( 2311 aAeAeBeAik ikaikaika     (3.31) 

)sinh(2 2311 aBeAeBeA ikaikaika     (3.32) 

)cosh(2)( 2311 aBeAeBeAik ikaikaika    (3.33) 

 

We now take the ratio of equations (3.30) and (3.31) and of (3.32) and (3.33), and 

find (i.e., we take ratios of left- and right hand sides, and equate those)  
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These equations can be rewritten as (multiplying out the denominators, and 

collecting terms with 1A , 1B  and 3A ),  
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Now eliminate 3A   and find  
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(3.38) 

Thus we find  
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and we find, after using some of the angle-doubling formulas for hyperbolic 

functions, that the absolute value squared, i.e., the reflection coefficient, is  
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In a similar way we can express 3A  in terms of 1A , or use  RT  1 !  

Alternative approach. The equation can be given in matrix form !  

Can you invert the right matrices and find the same answer? 

We now consider a particle of the mass of a hydrogen atom, kgm 2710*67.1  , 

and use a barrier of height meV4  and of width 1010  m. The picture for 
reflection and transmission coefficients can seen in Fig. 6.4a. We have also 
evaluated R  and T  for energies larger than the height of the barrier (the 
evaluation is straightforward).  

  

Figure 3.6: The reflection and transmission coefficients for a square barrier of 

height 4 meV (left) amd 50 meV (right) and width 1010   m. 

If we heighten the barrier to 50 meV, we find a slightly different picture, see Fig. 
3.6 b.  

Notice the oscillations (resonances) in the reflection. These are related to an integer 
number of oscillations fitting exactly in the width of the barrier, 02sin a .  


